Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis
نویسندگان
چکیده
The process of heterogeneous catalytic reaction under working conditions has long been considered a “black box”, which is mainly because the difficulties in directly characterizing structural changes catalysts at atomic level during reactions. development situ transmission electron microscopy (TEM) techniques offers opportunities for introducing realistic chemical environment TEM, making it possible to uncover mystery In this article, we present comprehensive overview application TEM catalysis, highlighting its utility observing gas-solid and liquid-solid reactions thermal electrocatalysis, photocatalysis. unique advantage revealing complex Revealing real-time dynamic structure processes crucial understanding intricate relationship between catalyst performance. Finally, perspective on future challenges catalysis. Heterogeneous catalysis not only contributes significantly enabling production indispensable commodities such as fuels fertilizer, but also shows great promise dealing with severe environmental problems.1Schlögl R. Catalytic synthesis ammonia-a “never-ending story”.Angew. Chem. Int. Ed. 2003; 42: 2004-2008https://doi.org/10.1002/anie.200301553Crossref PubMed Scopus (851) Google Scholar,2Low J. Yu Jaroniec M. Wageh S. Al-Ghamdi A.A. Heterojunction photocatalysts.Adv. Mater. 2017; 291601694https://doi.org/10.1002/adma.201601694Crossref (2606) Scholar,3Seh Z.W. Kibsgaard Dickens C.F. Chorkendorff I. Nørskov J.K. Jaramillo T.F. Combining theory experiment electrocatalysis: insights into materials design.Science. 355eaad4998https://doi.org/10.1126/science.aad4998Crossref (5708) Scholar,4Zhang L. Zhao Z.-J. Gong Nanostructured electrocatalytic Co2 reduction their related mechanisms.Angew. 56: 11326-11353https://doi.org/10.1002/anie.201612214Crossref (673) Scholar,5Liu Corma A. Metal catalysis: from single atoms nanoclusters nanoparticles.Chem. Rev. 2018; 118: 4981-5079https://doi.org/10.1021/acs.chemrev.7b00776Crossref (2501) Scholar,6Hoffmann M.R. Martin S.T. Choi W. Bahnemann D.W. Environmental applications semiconductor photocatalysis.Chem. 1995; 95: 69-96https://doi.org/10.1021/cr00033a004Crossref (17894) Scholar activity selectivity definitely depend microstructure catalysts, including surface structures, interfaces specific reactive sites.7Gao Hood Z.D. Chi Interfaces catalysts: advancing mechanistic through atomic-scale measurements.Acc. Res. 50: 787-795https://doi.org/10.1021/acs.accounts.6b00596Crossref (110) Scholar,8Yang X.-F. Wang Qiao B. Li Liu Zhang T. Single-atom new frontier catalysis.Acc. 2013; 46: 1740-1748https://doi.org/10.1021/ar300361mCrossref (2862) Therefore, atomically microstructures real significance. Although conventional provides some always deduced by ex characterizations before after reactions,9Somorjai G.A. Modern science technologies: an introduction.Chem. 1996; 96: 1223-1236https://doi.org/10.1021/cr950234eCrossref (284) sometimes results vague or even misleading knowledge intrinsic mechanism. Studies have shown that physicochemical properties often deviate greatly characterizations.10Dou Sun Z. Opalade N. Fu Tao F.F. Operando Chemistry surfaces catalysis.Chem. Soc. 2001-2027https://doi.org/10.1039/C6CS00931JCrossref Scholar,11Tao Crozier P.A. Atomic-scale observations structures 2016; 116: 3487-3539https://doi.org/10.1021/cr5002657Crossref (214) adsorption, activation desorption reactant molecules.12Tagliazucca V. Leoni Weidenthaler C. Crystal microstructural molybdenum nitrides traced X-ray diffraction studies.Phys. Phys. 2014; 16: 6182-6188https://doi.org/10.1039/C3CP54578DCrossref Scholar,13Zhang Nguyen Zhu Y. Zhan Tsung C.K.F. In-situ studies nanocatalysis.Acc. 1731-1739https://doi.org/10.1021/ar300245gCrossref (95) But these microscopic cannot be sufficiently examined like box” (Figure 1). To attain mechanism reactions, insightful rationalization structure-activity are strongly desired. Because first microscope was constructed Knoll Ruska 1932, never stopped spatial resolution keeps improving.14Knoll E. Das elektronenmikroskop.Z. 1932; 78: 318-339https://doi.org/10.1007/BF01342199Crossref (309) Now no longer desirable improve simply increasing acceleration voltage reduce wavelength, point still limited spherical aberration objective lens; meanwhile, high-energy beam usually causes irreversible damage sample.15Egerton R.F. P. Malac Radiation tem sem.Micron. 2004; 35: 399-409https://doi.org/10.1016/j.micron.2004.02.003Crossref (1518) Scholar,16Cazaux Correlations ionization radiation charging effects microscopy.Ultramicroscopy. 60: 411-425https://doi.org/10.1016/0304-3991(95)00077-1Crossref (137) most noteworthy achievement successful implantation correctors makes up defects uneven focus electromagnetic lenses, resulting improvement low conditions.17Dahmen U. Erni Radmilovic Ksielowski Rossell M.D. Denes Background, status aberration-corrected project.Philos. Trans. A Math. Eng. Sci. 2009; 367: 3795-3808https://doi.org/10.1098/rsta.2009.0094Crossref (75) Scholar,18Haider Uhlemann Schwan Rose H. Kabius Urban K. Electron image enhanced.Nature. 1998; 392: 768-769https://doi.org/10.1038/33823Crossref (829) parallel-illumination mode, beams traverse sample detected opposite side. use parallel illumination obtaining sharp selected-area patterns optimal classical contrast. mode well-suited crystal orientation analysis19Qu Mu X. Hu Zeng Lu Sui Determination crystallographic exposed facets titanium oxide nanocrystals.Adv. 2022; 342203320https://doi.org/10.1002/adma.202203320Crossref (9) periodic analysis nanomaterials. addition, obtained can provide valuable sample. High-resolution enables observation interfacial analysis,20Qu He Jiang Q. Kong Shi Unraveling role interface photogenerated charge separation anatase/rutile heterophase junction.J. 2023; 127: 768-775https://doi.org/10.1021/acs.jpcc.2c07482Crossref (1) fine dislocations twins,21Sun Wu D. Zou House S.D. Chen Zakharov D.N. Yang J.C. Zhou G. Dislocation-induced stop-and-go kinetics transformations.Nature. 607: 708-713https://doi.org/10.1038/s41586-022-04880-1Crossref (10) coherent boundary.22Song Lee Nakouzi Oriented attachment induces fivefold twins forming decomposing grain boundaries.Science. 2020; 40-45https://doi.org/10.1126/science.aax6511Crossref (109) scanning (STEM) developed Ardenne 1938.23Ardenne M.V. Reminiscences origins microprobe.in: Advances Imaging Physics. 96. Elsevier, 1996: 635-652Google Scholar,24Williams D.B. Carter C.B. instrument.in: Williams Transmission Microscopy: Textbook Materials Science. Springer US, 2009: 141-171Crossref Scholar,25Browning N.D. Chisholm M.F. Pennycook S.J. Atomic-resolution using microscope.Nature. 1993; 366: 143-146https://doi.org/10.1038/366143a0Crossref (446) STEM focused small spot scanned across sample, thereby generating high-resolution collection scattered electrons produced interaction high-angle annular dark field (HAADF) exhibits number sensitivity while being insensitive thickness focusing changes. Furthermore, implementation facilitates achieving sub-angstrom levels. utilizing HAADF imaging single-atom catalysts8Yang enhancing visibility heavy atoms. Equipped energy dispersive spectroscopy (EDS)26Zaluzec N.J. Burke M.G. Haigh Kulzick M.A. energy-dispersive spectrometry liquid cell analytical microscope.Microsc. Microanal. 20: 323-329https://doi.org/10.1017/S1431927614000154Crossref (47) Scholar,27Solmaz Huijben Koster Egoavil Gauquelin Van Tendeloo Verbeeck Noheda Rijnders Domain Bifeo3 thin films modified substrate termination.Adv. Funct. 26: 2882-2889https://doi.org/10.1002/adfm.201505065Crossref (32) loss (EELS),28Egerton energy-loss tem.Rep. Prog. 2008; 72016502https://doi.org/10.1088/0034-4885/72/1/016502Crossref (561) Scholar,29Williams spectrometers filters.in: 679-698Crossref Scholar,30Krivanek O.L. Dellby Hachtel J.A. Idrobo Hotz M.T. Plotkin-Swing Bacon Bleloch A.L. Corbin G.J. Hoffman et al.Progress ultrahigh eels.Ultramicroscopy. 2019; 203: 60-67https://doi.org/10.1016/j.ultramic.2018.12.006Crossref (81) information morphology, structure, composition, electronic resolution.31Longo Thomas P.J. Twesten R.D. Atomic-level eels mapping edges Dualeels™ mode.Micros. Today. 2012; 30-36https://doi.org/10.1017/s1551929512000478Crossref Scholar,32Longo Aitouchen Rice Topuria Atomic elemental srtio3/lamno3 multilayers fast simultaneous eds digitalmicrograph.Micros. 2015; 23: 44-53https://doi.org/10.1017/s1551929515000589Crossref Scholar,33Suenaga Koshino Atom-by-Atom graphene edge.Nature. 2010; 468: 1088-1090https://doi.org/10.1038/nature09664Crossref (416) commonly conducted conditions, so necessary introduce gas reactants approach condition. (ETEM) specially allows chamber maintaining main column high vacuum pressure-limiting apertures.34Tanaka Usukura Kusunoki Saito Sasaki Tanji Muto Arai Development high-voltage science.Microscopy (Oxf). 62: 205-215https://doi.org/10.1093/jmicro/dfs095Crossref (31) Scholar,35Wagner J.B. Cavalca F. Damsgaard C.D. Duchstein L.D.L. Hansen T.W. Exploring microscope.Micron. 43: 1169-1175https://doi.org/10.1016/j.micron.2012.02.008Crossref (65) Scholar,36Hansen Wagner environment.Microsc. 18: 684-690https://doi.org/10.1017/S1431927612000293Crossref (39) Scholar,37Boyes E.D. Gai P.L. science.Ultramicroscopy. 1997; 67: 219-232https://doi.org/10.1016/S0304-3991(96)00099-XCrossref (279) Scholar,38Wu Shan Gu Song Shang Deng phase research.Adv. 28: 9686-9712https://doi.org/10.1002/adma.201602519Crossref (107) Scholar,39Jinschek J.R. Helveg Image 1156-1168https://doi.org/10.1016/j.micron.2012.01.006Crossref (85) Moreover, various holders designed cross pressure gap based micro-electromechanical system (MEMS) technology,40Ashraf M.W. Tayyaba Afzulpurkar Micro electromechanical systems (mems) microfluidic devices biomedical applications.Int. Mol. 2011; 12: 3648-3704https://doi.org/10.3390/ijms12063648Crossref (200) Scholar,41Ho C.-M. Tai Y.-C. Micro-electro-mechanical-systems fluid flows.Annu. Fluid Mech. 30: 579-612https://doi.org/10.1146/annurev.fluid.30.1.579Crossref (1295) allow make direct contact molecules sealed cell.42Hansen Catalysts controlled atmospheres microscope.ACS Catal. 4: 1673-1685https://doi.org/10.1021/cs401148dCrossref (56) Scholar,43Liao H.-G. Zheng Liquid microscopy.Annu. 719-747https://doi.org/10.1146/annurev-physchem-040215-112501Crossref Scholar,44Wu Yao windowed cells in-situ studies.Nano Energy. 13: 735-756https://doi.org/10.1016/j.nanoen.2015.03.015Crossref (43) Besides environments, integration other excitation achieved thermal,45Duan Meng Gao Reconstruction supported metal nanoparticles conditions.Angew Engl. 57: 6464-6469https://doi.org/10.1002/anie.201800925Crossref (61) Scholar,46Helveg López-Cartes Sehested Clausen B.S. Rostrup-Nielsen Abild-Pedersen carbon nanofibre growth.Nature. 427: 426-429https://doi.org/10.1038/nature02278Crossref (1281) electrical,47Kuo C.H. Y.C. Gwo Huang M.H. Facet-dependent Au nanocrystal-enhanced electrical photocatalytic Au-Cu2o core-shell heterostructures.J. Am. 133: 1052-1057https://doi.org/10.1021/ja109182yCrossref (222) Scholar,48Zhang Du Tang Jia al.Lithium whisker growth stress generation force microscope-environmental set-up.Nat. Nanotechnol. 15: 94-98https://doi.org/10.1038/s41565-019-0604-xCrossref (174) Scholar,49Gao Kang Bai Electrically driven redox cerium oxides.J. 132: 4197-4201https://doi.org/10.1021/ja9086616Crossref (96) mechanical50Chen Zhong Zorn Abid A.Y. Ren Ma al.Atomic mechanically induced topological transition ferroelectric vortices.Nat. Commun. 11: 1840https://doi.org/10.1038/s41467-020-15616-yCrossref (46) optical excitation.51Zhang Miller B.K. amorphization anatase nanocrystals light irradiation water vapor.Nano Lett. 679-684https://doi.org/10.1021/nl304333hCrossref (80) Herein, briefly review developments recent advances possesses elucidating transformations It paramount importance unveil processes, unraveling establishing correlation key challenge operation overcome simulated TEM. For gun path must kept scattering beam, thus keeping coherence get high-quality images. Two approaches TEM: One differential pumping 2A),39Jinschek separates specimen apertures; 2B),52Ring E.A. de Jonge Microfluidic microscopy.Microsc. 622-629https://doi.org/10.1017/S1431927610093669Crossref (115) Scholar,53de Ross F.M. specimens liquid.Nat. 6: 695-704https://doi.org/10.1038/nnano.2011.161Crossref (707) enclose within window membranes transparent beam. Early 1942, Ruska54Ruska Beitrag zur übermikroskopischen abbildung bei höheren drucken.Kolloid 1942; 100: 212-219https://doi.org/10.1007/BF01519549Crossref tried separate independently pumped compartments insetting apertures pole piece. Later, Hashimoto al.55Hashimoto Naiki Eto Fujiwara High temperature microscope.Jpn. Appl. 1968; 7: 946-952https://doi.org/10.1143/jjap.7.946Crossref presser 300 Torr initial 10−2 high-temperature reaction. Then large differences parts decades,37Boyes Scholar,56Kamino Yaguchi Konno Watabe Marukawa Mima Kuroda Saka Makino al.Development injection/specimen heating holder microscope.J. Electron. Microsc. 2005; 54: 497-503https://doi.org/10.1093/jmicro/dfi071Crossref (64) successfully exploited commercial ETEMs.34Tanaka Scholar,42Hansen chamber, where take place, separated apertures, Figure 2A. And prevents diffusion different compartments. introduced without affecting addition gases, vapor chamber.57Yuan X.Y. Ou Fang Visualizing H2o reacting Tio2 active sites microscopy.Science. 428-430https://doi.org/10.1126/science.aay2474Crossref (112) Unlike ETEM fitting out well-compatible There encapsulate avoid leaking were grids.58Heide H.G. pressure.J. Cell Biol. 1962; 147-152https://doi.org/10.1083/jcb.13.1.147Crossref (37) Scholar,59Parkinson G.M. resolution, atmosphere (catem) catalysts.Catal. 1989; 2: 303-307https://doi.org/10.1007/BF00770228Crossref Scholar,60Daulton T.L. Little B.J. Lowe Jones-Meehan cell-transmission study microbial chromium(vi) spectroscopy.Microsc. 2001; 470-485https://doi.org/10.1007/S10005-001-0021-3Crossref MEMS technology set off boom MEMS-based cells.61Creemer J.F. Hoveling G.H. Ullmann Molenbroek A.M. Sarro P.M. Zandbergen H.W. ambient pressure.Ultramicroscopy. 108: 993-998https://doi.org/10.1016/j.ultramic.2008.04.014Crossref (258) Scholar,62Alan Yokosawa Gaspar Pandraud Paul O. Creemer Micro-fabricated channel ultra-thin yet ultra-strong windows 4-bar pressure.Appl. 100081903https://doi.org/10.1063/1.3688490Crossref (26) Scholar,63de Bigelow W.C. Veith Atmospheric microscopy.Nano 10: 1028-1031https://doi.org/10.1021/nl904254gCrossref Williamson al.64Williamson M.J. Tromp R.M. Vereecken Hull Dynamic nanoscale cluster solid-liquid interface.Nat. 532-536https://doi.org/10.1038/nmat944Crossref (591) reported silicon wafer packaging nitride film 2003. wafers membrane popular sealing material strength excellent transmission. layer decreasing. Current processed 25 nm thinner. requirement limits further need strong enough withstand difference films. 100 adding sticky indium upper lower wafers,65de Houben Dunin-Borkowski R.E. Resolution correction microscopy.Nat. 61-78https://doi.org/10.1038/s41578-018-0071-2Crossref reduced any interlayer. Also injected peristaltic pump, flow rate adjusted flexibly.52Ring bend environment, actual thicker than estimated.66Keskin Kunnas Liquid-phase controllable thickness.Nano 19: 4608-4613https://doi.org/10.1021/acs.nanolett.9b01576Crossref (42) Scholar,67Holtz M.E. Abruña H.D. Muller D.A. Situ liquids.Microsc. 1027-1035https://doi.org/10.1017/S1431927613001505Crossref (121) solve problem, control introduced.66Keskin Scholar,68Beker A.F. Lemang van Omme J.T. Spruit R.G. Bremmer Basak Pérez Garza H.H. electrochemistry inside mass transport.Nanoscale. 22192-22201https://doi.org/10.1039/D0NR04961ACrossref alternative encapsulation exploration, received wide attention advantages, thin, strong, impervious water.69Park Koo Noh Chang J.H. Cheong J.Y. Dae K.S. Park J.S. Ji Kim I.-D. Yuk J.M. Graphene microscopy: progress, applications, perspectives.ACS Nano. 2021; 288-308https://doi.org/10.1021/acsnano.0c10229Crossref (28) Scholar,70Yuk Ercius Hellebusch D.J. Crommie Zettl Alivisatos A.P. em colloidal nanocrystal cells.Science. 336: 61-64https://doi.org/10.1126/science.1217654Crossref (821) Compared cells, environments minimal contrast loss.71Koo Hahn Y.K. Live veils.Nano 4708-4713https://doi.org
منابع مشابه
Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy.
Advances in atomic resolution in situ environmental transmission electron microscopy for direct probing of gas-solid reactions, including at very high temperatures (approximately 2000 degrees C) are described. In addition, recent developments of dynamic real time in situ studies at the Angstrom level using a hot stage in an aberration corrected environment are presented. In situ data from Pt/Pd...
متن کاملIn Situ Heating Transmission Electron Microscopy
93 Abstract Temperature is one of the most important factors affecting the state and behavior of materials. In situ heating transmission electron microscopy (TEM) is a powerful tool for understanding such temperature effects, and recently in situ heating TEM has made significant progress in terms of temperature available and resolution attained. This article briefly describes newly developed sp...
متن کاملRecent Progress in Lorentz Transmission Electron Microscopy
After a brief review of the basic methods of Lorentz transmission electron microscopy (LTEM), including the Transport-of-Intensity formalism for phase reconstruction, we present a few examples of the application of LTEM to multiferroic materials, in this case ferromagnetic shape memory alloys. We discuss observations of magnetic domain walls pinned to anti-phase boundaries in Ni2MnGa, and domai...
متن کاملDevelopment of a Nanoindenter for In Situ Transmission Electron Microscopy.
In situ transmission electron microscopy is an established experimental technique that permits direct observation of the dynamics and mechanisms of dislocation motion and deformation behavior. In this article, we detail the development of a novel specimen goniometer that allows real-time observations of the mechanical response of materials to indentation loads. The technology of the scanning tu...
متن کاملRecent Advances in Fluorescent Labeling Techniques for Fluorescence Microscopy
Tremendous progress in recent computer-controlled systems for fluorescence and laser-confocal microscopy has provided us with powerful tools to visualize and analyze molecular events in the cells. Various fluorescent staining and labeling techniques have also been developed to be used with these powerful instruments. Fluorescent proteins such as green fluorescent protein (GFP) allow us to direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: iScience
سال: 2023
ISSN: ['2589-0042']
DOI: https://doi.org/10.1016/j.isci.2023.107072